Tumor regression in mice by delivery of Bcl-2 small interfering RNA with pegylated cationic liposomes.
نویسندگان
چکیده
The pharmacokinetics and antitumor activity of pegylated small interfering RNA (siRNA)/cationic liposome complexes were studied after systemic administration to mice. We designed pegylated-lipid carriers for achieving increased plasma concentrations of RNA and hence improved accumulation of RNA in tumors by the enhanced permeability and retention effect. We compared the pharmacokinetics of siRNA complexed with liposomes incorporating pegylated lipids with longer (C-17 or C-18), shorter (C-12 to C-16), or unsaturated (C-18:1) acyl chains. When longer acyl chains were used, the plasma concentrations of siRNA obtained were dramatically higher than when shorter or unsaturated chains were used. This may be explained by the higher gel-to-liquid-crystalline phase-transition temperature (Tc) of lipids with longer acyl chains, which may form more rigid liposomes with reduced uptake by the liver. We tested a siRNA that is sequence specific for the antiapoptotic bcl-2 mRNA complexed with a pegylated liposome incorporating a C-18 lipid (PEG-LIC) by i.v. administration in a mouse model of human prostate cancer. Three-fold higher accumulation of RNA in the tumors was achieved when PEG-LIC rather than nonpegylated liposomes was used, and sequence-specific antitumor activity was observed. Our siRNA/PEG-LIC complex showed no side effects on repeated administration and the strength of its antitumor activity may be attributed to its high uptake by the tumors. Pegylation of liposomes improved the plasma retention, uptake by s.c. tumors, and antitumor activity of the encapsulated siRNA. PEG-LIC is a promising candidate for siRNA cancer therapy.
منابع مشابه
Targeting HPV‐infected cervical cancer cells with PEGylated liposomes encapsulating siRNA and the role of siRNA complexation with polyethylenimine
The greatest obstacle to clinical application of cancer gene therapy is lack of effective delivery tools. Gene delivery vehicles must protect against degradation, avoid immunogenic effects and prevent off target delivery which can cause harmful side effects. PEGylated liposomes have greatly improved tumor localization of small molecule drugs and are a promising tool for nucleic acid delivery as...
متن کاملZwitterionic Poly(carboxybetaine)-based Cationic Liposomes for Effective Delivery of Small Interfering RNA Therapeutics without Accelerated Blood Clearance Phenomenon
For efficient delivery of small interfering RNA (siRNA) to the target diseased site in vivo, it is important to design suitable vehicles to control the blood circulation of siRNA. It has been shown that surface modification of cationic liposome/siRNA complexes (lipoplexes) with polyethylene glycol (PEG) could enhance the circulation time of lipoplexes. However, the first injection of PEGylated ...
متن کاملDelivery of Plasmid DNA into Tumors by Intravenous Injection of PEGylated Cationic Lipoplexes into Tumor-Bearing Mice
For systemic injection of cationic liposome/plasmid DNA (pDNA) complexes (cationic lipoplexes), polyethylene glycol (PEG)-modification (PEGylation) of lipoplexes can enhance their systemic stability. In this study, we examined whether intravenous injection of PEGylated cationic lipoplexes into tumor-bearing mice could deliver pDNA into tumor tissues and induce transgene expression. PEGylation o...
متن کاملCationic liposome-nucleic acid complexes for gene delivery and gene silencing.
Cationic liposomes (CLs) are studied worldwide as carriers of DNA and short interfering RNA (siRNA) for gene delivery and gene silencing, and related clinical trials are ongoing. Optimization of transfection efficiency and silencing efficiency by cationic liposome carriers requires a comprehensive understanding of the structures of CL-nucleic acid complexes and the nature of their interactions ...
متن کاملGalactose-modified cationic liposomes as a liver-targeting delivery system for small interfering RNA.
We have developed a galactose-modified cationic liposome for delivery of small interfering RNA (siRNA) to the liver. The liposomes were designed to be transported into hepatocytes via the asialoglycoprotein receptor, which recognizes galactose residues. The liposomes contained a novel galactose-modified lipid, 1,2-dioleoyl-sn-glycerol-3-phosphatidyl-N-(1-deoxylactito-1-yl)ethanolamine (GDOPE). ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cancer research
دوره 68 21 شماره
صفحات -
تاریخ انتشار 2008